Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(212): 20230591, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503340

RESUMO

Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals.


Assuntos
Columbidae , Acidente Vascular Cerebral , Animais , Columbidae/fisiologia , Fenômenos Biomecânicos , Voo Animal/fisiologia , Vento , Asas de Animais/fisiologia
2.
J R Soc Interface ; 19(193): 20220168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000229

RESUMO

Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.


Assuntos
Voo Animal , Asas de Animais , Animais , Fenômenos Biomecânicos , Aves
3.
R Soc Open Sci ; 8(7): 210779, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295532

RESUMO

Rotor blades can be found in many engineering applications, mainly associated with converting energy from fluids to work (or electricity). Rotor blade geometry is a key factor in the mechanical efficiency of the energy conversion process. For example, wind turbines' performance directly depends on the blade geometry and the wake flow formed behind them. We suggest to use a bioinspired blade based on the common swift wing. Common swift (Apus apus) is known to be a long-distance flyer, able to stay aloft for long periods of time by maintaining high lift and low drag. We study the near-wake flow characteristics of a freely rotating rotor with swept blades and its aerodynamic loads. These are compared with a straight-bladed rotor. The experiments were conducted in a water flume using particle image velocimetry (PIV) technique. Both blades were studied for four different flow speeds with freestream Reynolds numbers ranging from 23 000 to 41 000. Our results show that the near wake developed behind the swept-back blade was significantly different from the straight blade configuration. The near wake developed behind the swept-back blade exhibited relatively lower momentum loss and suppressed turbulent activity (mixing and production) compared with the straight blade. Comparing the aerodynamic characteristics, though the swept-back blade generated relatively less lift than the straight blade, the drag was relatively low. Thus, the swept-back blade produced two to three times higher lift-to-drag ratio than the straight blade. Based on these observations, we suggest that, with improved design optimizations, using the swept-back configuration in rotor blades (specifically used in wind turbines) can improve mechanical efficiency and reduce the energy loss during the conversion process.

4.
Integr Comp Biol ; 60(5): 1091-1108, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926106

RESUMO

The fluid dynamics of owls in flapping flight is studied by coordinated experiments and computations. The great horned owl was selected, which is nocturnal, stealthy, and relatively large sized raptor. On the experimental side, perch-to-perch flight was considered in an open wind tunnel. The owl kinematics was captured with multiple cameras from different view angles. The kinematic extraction was central in driving the computations, which were designed to resolve all significant spatio-temporal scales in the flow with an unprecedented level of resolution. The wing geometry was extracted from the planform image of the owl wing and a three-dimensional model, the reference configuration, was reconstructed. This configuration was then deformed in time to best match the kinematics recorded during flights utilizing an image-registration technique based on the large deformation diffeomorphic metric mapping framework. All simulations were conducted using an eddy-resolving, high-fidelity, solver, where the large displacements/deformations of the flapping owl model were introduced with an immersed boundary formulation. We report detailed information on the spatio-temporal flow dynamics in the near wake including variables that are challenging to measure with sufficient accuracy, such as aerodynamic forces. At the same time, our results indicate that high-fidelity computations over smooth wings may have limitations in capturing the full range of flow phenomena in owl flight. The growth and subsequent separation of the laminar boundary layers developing over the wings in this Reynolds number regime is sensitive to the surface micro-features that are unique to each species.


Assuntos
Voo Animal , Modelos Biológicos , Estrigiformes , Animais , Biomimética , Asas de Animais
5.
Integr Comp Biol ; 60(5): 1109-1122, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697833

RESUMO

Owl flight has been studied over multiple decades associated with bio-inspiration for silent flight. However, their aerodynamics has been less researched. The aerodynamic noise generated during flight depends on the turbulent state of the flow. In order to document the turbulent characteristics of the owl during flapping flight, we measured the wake flow behind a freely flying great horned owl (Bubo virginianus). For comparison purposes, we chose to fly a similar-sized raptor a Harris's hawk (Parabuteo unicinctus): one is nocturnal and the other is a diurnal bird of prey. Here, we focus on the wake turbulent aspects and their impact on the birds' flight performances. The birds were trained to fly inside a large-scale wind tunnel in a perch-to-perch flight mode. The near wake of the freely flying birds was characterized using a long duration time-resolved particle image velocimetry system. The velocity fields in the near wake were acquired simultaneously with the birds' motion during flight which was sampled using multiple high-speed cameras. The turbulent momentum fluxes, turbulent kinetic energy production, and dissipation profiles are examined in the wake and compared. The near wake of the owl exhibited significantly higher turbulent activity than the hawk in all cases, though both birds are similar in size and followed similar flight behavior. It is suggested that owls modulate the turbulence activity of the near wake in the vicinity of the wing, resulting in rapid decay before radiating into the far-field; thus, suppressing the aerodynamic noise at the far wake.


Assuntos
Aves Predatórias , Estrigiformes , Animais , Fenômenos Biomecânicos , Voo Animal , Reologia , Asas de Animais
6.
J Exp Biol ; 223(Pt 9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32253288

RESUMO

Fish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenges that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime, of intermediate Reynolds numbers, was shown to affect the swimming of larval fish and impede their ability to capture prey. Prey capture is impeded because smaller larvae produce weaker suction flows, exerting weaker forces on the prey. Previous observations on feeding larvae also showed prey exiting the mouth after initially entering it (hereafter 'in-and-out'), although the mechanism causing such failures had been unclear. In this study, we used numerical simulations to investigate the hydrodynamic mechanisms responsible for the failure to feed caused by this in-and-out prey movement. Detailed kinematics of the expanding mouth during prey capture by larval Sparus aurata were used to parameterize age-specific numerical models of the flows inside the mouth. These models revealed that for small larvae which expand their mouth slowly, fluid entering the mouth cavity is expelled through the mouth before it is closed, resulting in flow reversal at the orifice. This relative efflux of water through the mouth was >8% of the influx through the mouth for younger ages. However, similar effluxes were found when we simulated slow strikes by larger fish. The simulations can explain the observations of larval fish failing to feed because of the in-and-out movement of the prey. These results further highlight the importance of transporting the prey from the gape deeper into the mouth cavity in determining suction-feeding success.


Assuntos
Hidrodinâmica , Comportamento Predatório , Animais , Fenômenos Biomecânicos , Comportamento Alimentar , Peixes , Larva , Sucção
7.
Interface Focus ; 7(1): 20160090, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28163881

RESUMO

Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper (Calidris mauri), European starling (Sturnus vulgaris) and American robin (Turdus migratorius) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named 'double branch'). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...